IGI-LuNER: single-well multiplexed RT-qPCR test for SARS-CoV-2.medRxiv. 2020 Dec 11:2020.12.10.20247338. doi: 10.1101/2020.12.10.20247338. Preprint.PMID: 33330883
2024
CRISPR-Cas12a bends DNA to destabilize base pairs during target interrogation. bioRxiv [Preprint]. 2024 Jul 31:2024.07.31.606079. doi: 10.1101/2024.07.31.606079.PMID: 39131396
.
Mechanism-guided engineering of a minimal biological particle for genome editing. bioRxiv [Preprint]. 2024 Jul 24:2024.07.23.604809. doi: 10.1101/2024.07.23.604809.PMID: 39091760
.
Single-molecule live-cell RNA imaging with CRISPR-Csm. bioRxiv [Preprint]. 2024 Jul 16:2024.07.14.603457. doi: 10.1101/2024.07.14.603457.PMID: 39071319
.
Structure-guided discovery of ancestral CRISPR-Cas13 ribonucleases. Science. 2024 Aug 2;385(6708):538-543. doi: 10.1126/science.adq0553. Epub 2024 Jul 18.PMID: 39024377
.
A roadmap for affordable genetic medicines. Nature. 2024 Jul 17. doi: 10.1038/s41586-024-07800-7. Online ahead of print.PMID: 39019069
.
.
Rapid DNA unwinding accelerates genome editing by engineered CRISPR-Cas9. Cell. 2024 May 13:S0092-8674(24)00457-4. doi: 10.1016/j.cell.2024.04.031. Online ahead of print.PMID: 38781968
.
RNA language models predict mutations that improve RNA function. bioRxiv [Preprint]. 2024 Apr 6:2024.04.05.588317. doi: 10.1101/2024.04.05.588317.PMID: 38617247
.
Assembly of SARS-CoV-2 nucleocapsid protein with nucleic acid. Nucleic Acids Res. 2024 Apr 8:gkae256. doi: 10.1093/nar/gkae256. Online ahead of print.PMID: 38587193
.
An essential and highly selective protein import pathway encoded by nucleus-forming phage. bioRxiv [Preprint]. 2024 Mar 21:2024.03.21.585822. doi:10.1101/2024.03.21.585822. PMID: 38562762
.
A phage nucleus-associated RNA-binding protein is required for jumbo phage infection. Nucleic Acids Res. 2024 Mar 30:gkae216. doi: 10.1093/nar/gkae216. Online ahead of print.PMID: 38554115
.
Hachiman is a genome integrity sensor. bioRxiv [Preprint]. 2024 Feb 29:2024.02.29.582594. doi:10.1101/2024.02.29.582594.PMID: 38464307
2023
Rapid DNA unwinding accelerates genome editing by engineered CRISPR-Cas9. bioRxiv. 2023 Dec 15:2023.12.14.571777. doi: 10.1101/2023.12.14.571777. Preprint.PMID: 38168238
Assembly reactions of SARS-CoV-2 nucleocapsid protein with nucleic acid. bioRxiv. 2023 Nov 23:2023.11.22.568361. doi: 10.1101/2023.11.22.568361. Preprint.PMID: 38045338
Infant microbiome cultivation and metagenomic analysis reveal Bifidobacterium 2′-fucosyllactose utilization can be facilitated by coexisting species Nat Commun. 2023 Nov 16;14(1):7417. doi: 10.1038/s41467-023-43279-y.PMID: 37973815
Targeting the non-coding genome and temozolomide signature enables CRISPR-mediated glioma oncolysis Cell Rep. 2023 Nov 1;42(11):113339. doi: 10.1016/j.celrep.2023.113339. Online ahead of print.PMID: 37917583
CRISPR technology: A decade of genomeediting is only the beginning. Wang JY, Doudna JA.Science. 2023 Jan 20;379(6629):eadd8643. doi: 10.1126/science.add8643. Epub 2023 Jan 20.PMID: 36656942
Genome editing in plants using the compact editor CasΦ. Li Z, Zhong Z, Wu Z, Pausch P, Al-Shayeb B, Amerasekera J, Doudna JA, Jacobsen SE.Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2216822120. doi: 10.1073/pnas.2216822120. Epub 2023 Jan 18.PMID: 36652483
To TnpB or not TnpB? Cas12 is the answer.Nat Chem Biol. 2023 Feb 16. doi: 10.1038/s41589-022-01243-9. Online ahead of print.PMID: 36797405
2022
Improved genome editing by an engineered CRISPR-Cas12a. Nucleic Acids Res. 2022 Dec 9;50(22):12689-12701. doi: 10.1093/nar/gkac1192.PMID: 36537251
Decorating chromatin for enhanced genome editing using CRISPR-Cas9 Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2204259119. doi: 10.1073/pnas.2204259119. Epub 2022 Dec 2.PMID: 36459645
Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell. 2022 Nov 23;185(24):4574-4586.e16. doi: 10.1016/j.cell.2022.10.020.PMID: 36423580
Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing. Nat Microbiol. 2022 Oct 31. doi: 10.1038/s41564-022-01258-x. Online ahead of print.PMID: 36316451
Borgs are giant genetic elements with potential to expand metabolic capacity. Nature. 2022 Oct;610(7933):731-736. doi: 10.1038/s41586-022-05256-1. Epub 2022 Oct 19.PMID: 36261517
Conserved features of TERT promoter duplications reveal an activation mechanism that mimics hotspot mutations in cancer. BNat Commun. 2022 Sep 16;13(1):5430. doi: 10.1038/s41467-022-33099-x.PMID: 36114166
Treatment of Genetic Diseases With CRISPR Genome Editing. JAMA. 2022 Sep 13;328(10):980-981. doi: 10.1001/jama.2022.13468.
Rapid detection of SARS-CoV-2 RNA in saliva via Cas13. Nat Biomed Eng. 2022 Aug 11. doi: 10.1038/s41551-022-00917-y. Online ahead of print.PMID: 35953650
CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Res. 2022 Aug 11:gkac680. doi: 10.1093/nar/gkac680. Online ahead of print.PMID: 35950485
A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Mol Cell. 2022 Jun 2;82(11):2148-2160.e4. doi: 10.1016/j.molcel.2022.04.020.PMID: 35659325
Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat Rev Microbiol. 2022 May 13. doi: 10.1038/s41579-022-00739-4. Online ahead of print.PMID: 35562427
Crystal structure of an RNA/DNA strand exchange junction. PLoS One. 2022 Apr 18;17(4):e0263547. doi: 10.1371/journal.pone.0263547. eCollection 2022.PMID: 35436289 Free PMC article
Neutralizing immunity in vaccine breakthrough infections from the SARS-CoV-2 Omicron and Delta variants. Cell. 2022 Mar 18;185(9):1539-1548.e5. doi: 10.1016/j.cell.2022.03.019. Online ahead of print.PMID: 35429436
CRISPR-Cas9 bends and twists DNA to read its sequence. Nat Struct Mol Biol. 2022 Apr;29(4):395-402. doi: 10.1038/s41594-022-00756-0. Epub 2022 Apr 14.
A functional map of HIV-host interactions in primary human T cells. Nat Commun. 2022 Apr 1;13(1):1752. doi: 10.1038/s41467-022-29346-w.PMID: 35365639
Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Mol Cell. 2022 Mar 17;82(6):1199-1209.e6. doi: 10.1016/j.molcel.2022.02.002. Epub 2022 Feb 25.PMID: 35219382
CRISPR-Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells. Lin-Shiao E, Pfeifer WG, Shy BR, Saffari Doost M, Chen E, Vykunta VS, Hamilton JR, Stahl EC, Lopez DM, Sandoval Espinoza CR, Deyanov AE, Lew RJ, Poirer MG, Marson A, Castro CE, Doudna JA.Nucleic Acids Res. 2022 Feb 22;50(3):1256-1268. doi: 10.1093/nar/gkac049.PMID: 35104875
Limited cross-variant immunity after infection with the SARS-CoV-2 Omicron variant without vaccination. Suryawanshi RK, Chen IP, Ma T, Syed AM, Simoneau CR, Ciling A, Khalid MM, Sreekumar B, Chen PY, George AF, Kumar GR, Montano M, Garcia-Knight MA, Brazer N, Saldhi P, Sotomayor-Gonzalez A, Servellita V, Gliwa A, Nguyen J, Silva I, Milbes B, Kojima N, Hess V, Shacreaw M, Lopez L, Brobeck M, Turner F, Soveg FW, Fang X, Maishan M, Matthay M, Morris MK, Wadford D, Hanson C, Greene WC, Andino R, Spraggon L, Roan NR, Chiu CY, Doudna J, Ott M.medRxiv. 2022 Jan 17:2022.01.13.22269243. doi: 10.1101/2022.01.13.22269243. Preprint.PMID: 35075459
Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles.Syed AM, Ciling A, Khalid MM, Sreekumar B, Chen PY, Kumar GR, Silva I, Milbes B, Kojima N, Hess V, Shacreaw M, Lopez L, Brobeck M, Turner F, Spraggon L, Taha TY, Tabata T, Chen IP, Ott M, Doudna JA.medRxiv. 2022 Jan 2:2021.12.20.21268048. doi: 10.1101/2021.12.20.21268048. Preprint.PMID: 34981067
Species- and site-specific genome editing in complex bacterial communities.Rubin BE, Diamond S, Cress BF, Crits-Christoph A, Lou YC, Borges AL, Shivram H, He C, Xu M, Zhou Z, Smith SJ, Rovinsky R, Smock DCJ, Tang K, Owens TK, Krishnappa N, Sachdeva R, Barrangou R, Deutschbauer AM, Banfield JF, Doudna JA.Nat Microbiol. 2022 Jan;7(1):34-47. doi: 10.1038/s41564-021-01014-7. Epub 2021 Dec 6.PMID: 34873292
2021
The NIH Somatic Cell Genome Editing program. Saha K, Sontheimer EJ, Brooks PJ, Dwinell MR, Gersbach CA, Liu DR, Murray SA, Tsai SQ, Wilson RC, Anderson DG, Asokan A, Banfield JF, Bankiewicz KS, Bao G, Bulte JWM, Bursac N, Campbell JM, Carlson DF, Chaikof EL, Chen ZY, Cheng RH, Clark KJ, Curiel DT, Dahlman JE, Deverman BE, Dickinson ME, Doudna JA, Ekker SC, Emborg ME, Feng G, Freedman BS, Gamm DM, Gao G, Ghiran IC, Glazer PM, Gong S, Heaney JD, Hennebold JD, Hinson JT, Khvorova A, Kiani S, Lagor WR, Lam KS, Leong KW, Levine JE, Lewis JA, Lutz CM, Ly DH, Maragh S, McCray PB Jr, McDevitt TC, Mirochnitchenko O, Morizane R, Murthy N, Prather RS, Ronald JA, Roy S, Roy S, Sabbisetti V, Saltzman WM, Santangelo PJ, Segal DJ, Shimoyama M, Skala MC, Tarantal AF, Tilton JC, Truskey GA, Vandsburger M, Watts JK, Wells KD, Wolfe SA, Xu Q, Xue W, Yi G, Zhou J; SCGE Consortium. Nature. 2021 Apr;592(7853):195-204. doi: 10.1038/s41586-021-03191-1. Epub 2021 Apr 7.PMID: 33828315
Accelerated RNA detection using tandem CRISPR nucleases. Liu TY, Knott GJ, Smock DCJ, Desmarais JJ, Son S, Bhuiya A, Jakhanwal S, Prywes N, Agrawal S, de León Derby MD, Switz NA, Armstrong M, Harris AR, Charles EJ, Thornton BW, Fozouni P, Shu J, Stephens SI, Kumar GR, Zhao C, Mok A, Iavarone AT, Escajeda AM, McIntosh R, Kim SE, Dugan EJ; IGI Testing Consortium, Pollard KS, Tan MX, Ott M, Fletcher DA, Lareau LF, Hsu PD, Savage DF, Doudna JA.medRxiv. 2021 Mar 24:2021.03.19.21253328. doi: 10.1101/2021.03.19.21253328. Preprint.PMID: 33791736
Cancer-specific loss of TERT activation sensitizes glioblastoma to DNA damage. Amen AM, Fellmann C, Soczek KM, Ren SM, Lew RJ, Knott GJ, Park JE, McKinney AM, Mancini A, Doudna JA, Costello JF.Proc Natl Acad Sci U S A. 2021 Mar 30;118(13):e2008772118. doi: 10.1073/pnas.2008772118.PMID: 33758097
A CRISPR-Cas9-integrase complex generates precise DNA fragments for genome integration. Jakhanwal S, Cress BF, Maguin P, Lobba MJ, Marraffini LA, Doudna JA.Nucleic Acids Res. 2021 Mar 8:gkab123. doi: 10.1093/nar/gkab123. Online ahead of print.PMID: 33693715
Quantification of Cas9 binding and cleavage across diverse guide sequences maps landscapes of target engagement. Boyle EA, Becker WR, Bai HB, Chen JS, Doudna JA, Greenleaf WJ.Sci Adv. 2021 Feb 19;7(8):eabe5496. doi: 10.1126/sciadv.abe5496. Print 2021 Feb.PMID: 33608277
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA.Cell. 2021 Feb 4;184(3):844. doi: 10.1016/j.cell.2021.01.019.PMID: 33545038
Robotic RNA extraction for SARS-CoV-2 surveillance using saliva samples. Hamilton JR, Stahl EC, Tsuchida CA, Lin-Shiao E, Tsui CK, Pestal K, Gildea HK, Witkowsky LB, Moehle EA, McDevitt SL, McElroy M, Keller A, Sylvain I, Hirsh A, Ciling A, Ehrenberg AJ, Ringeisen BR, Huberty G, Urnov FD, Giannikopoulos P, Doudna JA.medRxiv. 2021 Jan 29:2021.01.10.21249151. doi: 10.1101/2021.01.10.21249151. Preprint.PMID: 33532798
Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. He C, Keren R, Whittaker ML, Farag IF, Doudna JA, Cate JHD, Banfield JF.Nat Microbiol. 2021 Jan 25. doi: 10.1038/s41564-020-00840-5. Online ahead of print.PMID: 33495623
Launching a saliva-based SARS-CoV-2 surveillance testing program on a university campus. Alexander J. Ehrenberg, Erica A. Moehle, Cara E. Brook, Andrew H. Doudna Cate, Lea B. Witkowsky, Rohan Sachdeva, Ariana Hirsch, Kerrie Barry, Jennifer R. Hamilton, Enrique Lin-Shiao, Shana McDevitt, Luis Valentin-Alvarado, Kaitlyn N. Letourneau, Lauren Hunter, Kathleen Pestal, Phillip, A. Frankino, Andrew Murley, Divya Nandakumar, Elizabeth C. Stahl, Connor A. Tsuchida, Holly K. Gildea, Andrew G. Murdock, Megan L. Hochstrasser, Lucie Bardet, Carolyn Sherry, the IGI SARS-CoV-consortium, Anna Harte, Guy Nicolette, Petros Giannikopoulos, Dirk Hockemeyer, Maya Petersen, Fyodor D. Urnov, Bradley R. Ringeisen, Mike Boots, Jennifer A. Doudna medRxiv 2021.01.24.21250385; doi: https://doi.org/10.1101/2021.01.24.212 50385
Optimizing COVID-19 control with asymptomatic surveillance testing in a university environment. Brook CE, Northrup GR, Ehrenberg AJ, Doudna JA, Boots M.medRxiv. 2021 Jan 7:2020.11.12.20230870. doi: 10.1101/2020.11.12.20230870. Preprint.PMID: 33442708
Controlling and enhancing CRISPR systems. Shivram H, Cress BF, Knott GJ, Doudna JA.Nat Chem Biol. 2021 Jan;17(1):10-19. doi: 10.1038/s41589-020-00700-7. Epub 2020 Dec 16.PMID: 33328654
Human Molecular Genetics and Genomics – Important Advances and Exciting Possibilities. Collins FS, Doudna JA, Lander ES, Rotimi CN.N Engl J Med. 2021 Jan 7;384(1):1-4. doi: 10.1056/NEJMp2030694. Epub 2021 Jan 2.PMID: 33393745
2020
Rapid detection of SARS-CoV-2 with Cas13.medRxiv. 2020 Dec 16:2020.12.14.20247874. doi: 10.1101/2020.12.14.20247874. Preprint.PMID: 33354689
Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell. 2020 Dec 4:S0092-8674(20)31623-8. doi: 10.1016/j.cell.2020.12.001. Online ahead of print.PMID: 33306959
Attachment of a 32P-phosphate to the 3′ Terminus of a DNA Oligonucleotide. Joshua C. Cofsky and Jennifer Doudna doi: 10.21769/BioProtoc.3787 Published: Vol 10, Iss 20, October 20, 2020
Reactions to the National Academies/Royal Society Report on Heritable Human Genome Editing. CRISPR J. 2020 Oct;3(5):332-349. doi:10.1089/crispr.2020.29106.man.PMID: 33095048
Site-Specific Bioconjugation through Enzyme-Catalyzed Tyrosine-Cysteine Bond Formation.
Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nat Biotechnol. 2020 Sep 7. doi: 10.1038/s41587-020-0646-5. Online ahead of print.PMID: 32895548
Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. J Biol Chem. 2020 Oct 16;295(42):14473-14487. doi: 10.1074/jbc.REV120.007034. Epub 2020 Aug 14.PMID: 32817336
DNA capture by a CRISPR-Cas9-guided adenine base editor. Science. 2020 Jul 31;369(6503):566-571. doi: 10.1126/science.abb1390.PMID: 32732424
Engineering of Monosized Lipid-Coated Mesoporous Silica Nanoparticles for CRISPR Delivery. Acta Biomater. 2020 Jul 20:S1742-7061(20)30413-X. doi: 10.1016/j.actbio.2020.07.027. Online ahead of print.PMID: 32702530
CRISPR-CasΦ from huge phages is a hypercompact genome editor.Science. 2020 Jul 17;369(6501):333-337. doi: 10.1126/science.abb1400.PMID: 32675376
A scoutRNA Is Required for Some Type V CRISPR-Cas Systems. Mol Cell. 2020 Jun 30:S1097-2765(20)30424-X. doi: 10.1016/j.molcel.2020.06.022. Online ahead of print.PMID: 32645367
CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks. Cofsky JC, Karandur D, Huang CJ, Witte IP, Kuriyan J, Doudna JA. Elife. 2020 Jun 10;9. pii: e55143. doi: 10.7554/eLife.55143. PMID:32519675
Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, Wilson C, Koblan LW, Zeng J, Bauer DE, Doudna JA, Liu DR. Nat Biotechnol. 2020 May 20. doi: 10.1038/s41587-020-0562-8. [Epub ahead of print] PMID: 32433548
Machine learning predicts new anti-CRISPR proteins. Eitzinger S, Asif A, Watters KE, Iavarone AT, Knott GJ, Doudna JA, Minhas FUAA. Nucleic Acids Res. 2020 Apr 14. pii: gkaa219. doi: 10.1093/nar/gkaa219. [Epub ahead of print] PMID: 32286628
Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes. Watters KE, Shivram H, Fellmann C, Lew RJ, McMahon B, Doudna JA. Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6531-6539. doi: 10.1073/pnas.1917668117. Epub 2020 Mar 10. PMID: 32156733
Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling. Ivanov IE, Wright AV, Cofsky JC, Aris KDP, Doudna JA, Bryant Z. Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5853-5860. doi: 10.1073/pnas.1913445117. Epub 2020 Mar 2. PMID:32123105
The promise and challenge of therapeutic genome editing. Doudna JA. Nature. 2020 Feb;578(7794):229-236. doi: 10.1038/s41586-020-1978-5. Epub 2020 Feb 12. Review. PMID: 32051598
Clades of huge phages from across Earth’s ecosystems. Al-Shayeb B, Sachdeva R, Chen LX, Ward F, Munk P, Devoto A, Castelle CJ, Olm MR, Bouma-Gregson K, Amano Y, He C, Méheust R, Brooks B, Thomas A, Lavy A, Matheus-Carnevali P, Sun C, Goltsman DSA, Borton MA, Sharrar A, Jaffe AL, Nelson TC, Kantor R, Keren R, Lane KR, Farag IF, Lei S, Finstad K, Amundson R, Anantharaman K, Zhou J, Probst AJ, Power ME, Tringe SG, Li WJ, Wrighton K, Harrison S, Morowitz M, Relman DA, Doudna JA, Lehours AC, Warren L, Cate JHD, Santini JM, Banfield JF. Nature. 2020 Feb;578(7795):425-431. doi: 10.1038/s41586-020-2007-4. Epub 2020 Feb 12. PMID:32051592
Knocking out barriers to engineered cell activity. Hamilton JR, Doudna JA. Science. 2020 Feb 28;367(6481):976-977. doi: 10.1126/science.aba9844. Epub 2020 Feb 6. No abstract available. PMID: 32029685
2019
Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. Knott GJ, Cress BF, Liu JJ, Thornton BW, Lew RJ, Al-Shayeb B, Rosenberg DJ, Hammel M, Adler BA, Lobba MJ, Xu M, Arkin AP, Fellmann C, Doudna JA. Elife. 2019 Aug 9;8. pii: e49110. doi: 10.7554/eLife.49110. [Epub ahead of print] PMID: 31397669
Target preference of Type III-A CRISPR-Cas complexes at the Transcription Bubble. Liu T, Liu J, Aditham A, Nogales E, Doudna J. Nat Commun. 2019 Jul 5;10(1):3001. doi: 10.1038/s41467-019-10780-2. PMID: 31278272
Candidate Phyla Radiation Roizmanbacteria From Hot Springs Have Novel and Unexpectedly Abundant CRISPR-Cas Systems. Chen LX, Al-Shayeb B, Méheust R, Li WJ, Doudna JA, Banfield JF. Front Microbiol. 2019 May 3;10:928. doi: 10.3389/fmicb.2019.00928. eCollection 2019.
PMID: 31130929
Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Knott GJ, Thornton BW, Lobba MJ, Liu JJ, Al-Shayeb B, Watters KE, Doudna JA. Nat Struct Mol Biol. 2019 Apr;26(4):315-321. doi: 10.1038/s41594-019-0208-z. Epub 2019 Apr 1. PMID: 30936531
A Unified Resource for Tracking Anti-CRISPR Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL, Moineau S, Peng X, Sontheimer EJ, Wiedenheft B. CRISPR J. 2018 Oct;1:304-305. doi: 10.1089/crispr.2018.0043. No abstract available. PMID: 31021273 [PubMed – in process
Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs. Kundert K, Lucas JE, Watters KE, Fellmann C, Ng AH, Heineike BM, Fitzsimmons CM, Oakes BL, Qu J, Prasad N, Rosenberg OS, Savage DF, El-Samad H, Doudna JA, Kortemme T. Nat Commun. 2019 May 9;10(1):2127. doi: 10.1038/s41467-019-09985-2. PMID: 31073154
Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics. Ricci CG, Chen JS, Miao Y, Jinek M, Doudna JA, McCammon JA, Palermo G. ACS Cent Sci. 2019 Apr 24;5(4):651-662. doi: 10.1021/acscentsci.9b00020. Epub 2019 Mar 7. PMID: 31041385
CasX enzymes comprise a distinct family of RNA-guided genome editors. Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B, Wagner A, Brötzmann J, Staahl BT, Taylor KL, Desmarais J, Nogales E, Doudna JA. Nature. 2019 Feb 4. 10.1038/s41586-019-0908-x. [Epub ahead of print]
Spacer Acquisition Rates Determine the Immunological Diversity of the Type II CRISPR-Cas Immune Response. Heler R, Wright AV, Vucelja M, Doudna JA, Marraffini LA. Cell Host Microbe. 2019 Jan 14. pii: S1931-3128(18)30643-7. doi: 10.1016/j.chom.2018.12.016. [Epub ahead of print]
A Functional Mini-Integrase in a Two-Protein-type V-C CRISPR System. Wright AV, Wang JY, Burstein D, Harrington LB, Paez-Espino D, Kyrpides NC, Iavarone AT, Banfield JF, Doudna JA. Mol Cell. 2019 Jan 8. pii: S1097-2765(18)31069-4. doi: 10.1016/j.molcel.2018.12.015. [Epub ahead of print]
CRISPR-Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV-host factor interactions. Hultquist JF, Hiatt J, Schumann K, McGregor MJ, Roth TL, Haas P, Doudna JA, Marson A, Krogan NJ. Nat Protoc. 2019 Jan;14(1):1-27. doi: 10.1038/s41596-018-0069-7. [Epub ahead of print]
CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Oakes BL, Fellmann C, Rishi H, Taylor KL, Ren SM, Nadler DC, Yokoo R, Arkin AP, Doudna JA, Savage DF. Cell. 2019 Jan;176(1-2):254-267. doi: 10.1016/j.cell.2018.11.052. PubMed PMID: 30633905.
2018
Temperature-Responsive Competitive Inhibition of CRISPR-Cas9. Jiang F, Liu JJ, Osuna BA, Xu M, Berry JD, Rauch BJ, Nogales E, Bondy-Denomy J, Doudna JA. Mol Cell. 2018 Dec 19. pii: S1097-2765(18)30986-9. doi: 10.1016/j.molcel.2018.11.016. [Epub ahead of print]
Key role of the REC lobe during CRISPR-Cas9 activation by ‘sensing’, ‘regulating’, and ‘locking’ the catalytic HNH domain. Palermo G, Chen JS, Ricci CG, Rivalta I, Jinek M, Batista VS, Doudna JA, McCammon JA. Q Rev Biophys. 2018;51. pii: e91. doi: 10.1017/S0033583518000070. Epub 2018 Aug 3. [Epub ahead of print]
Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA. Science. 2018 Oct 18. 362(6416):839-842. doi: 10.1126/science.aav4294. Epub 2018 Oct 18. PMID: 30337455
A Unified Resource for Tracking Anti-CRISPR Names. Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL, Moineau S, Peng X, Sontheimer EJ, Wiedenheft B.
CRISPR J. 2018 Oct;1:304-305. doi: 10.1089/crispr.2018.0043.
PMID: 31021273
Disruption of the β1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner. Mancini A, Xavier-Magalhães A, Woods WS, Nguyen KT, Amen AM, Hayes JL, Fellmann C, Gapinske M, McKinney AM, Hong C, Jones LE, Walsh KM, Bell RJA, Doudna JA, Costa BM, Song JS, Perez-Pinera P, Costello JF. Cancer Cell. 2018 Sep 10;34(3):513-528.e8. doi: 10.1016/j.ccell.2018.08.003.
Systematic discovery of natural CRISPR-Cas12a inhibitors. Watters KE, Fellmann C, Bai HB, Ren SM, Doudna JA. Science. 2018 Sep 6. pii: eaau5138. doi: 10.1126/science.aau5138. [Epub ahead of print]
CRISPR-Cas guides the future of genetic engineering. Knott GJ, Doudna JA Science. 2018 Aug 31;361(6405):866-869. doi: 10.1126/science.aat5011.
The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Willsey AJ, Morris MT, Wang S, Willsey HR, Sun N, Teerikorpi N, Baum TB, Cagney G, Bender KJ, Desai TA, Srivastava D, Davis GW, Doudna J, Chang E, Sohal V, Lowenstein DH, Li H, Agard D, Keiser MJ, Shoichet B, von Zastrow M, Mucke L, Finkbeiner S, Gan L, Sestan N, Ward ME, Huttenhain R, Nowakowski TJ, Bellen HJ, Frank LM, Khokha MK, Lifton RP, Kampmann M, Ideker T, State MW, Krogan NJ. Cell. 2018 Jul 26;174(3):505-520. doi: 10.1016/j.cell.2018.06.016.
RNA Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a. Tambe A, East-Seletsky A, Knott GJ, Doudna JA, O’Connell MR. Cell Rep. 2018 Jul 24;24(4):1025-1036. doi: 10.1016/j.celrep.2018.06.105.
Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Huang CH, Lee KC, Doudna JA. Trends Cancer. 2018 Jul;4(7):499-512. doi: 10.1016/j.trecan.2018.05.006. Epub 2018 Jun 13.
Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell Type Specific Gene Editing. Rouet R, Thuma BA, Roy MD, Lintner NG, Rubitski DM, Finley JE, Wisniewska HM, Mendonsa R, Hirsh A, de Oñate L, Compte J, Mclellan TJ, Bellenger J, Feng X, Varghese A, Chrunyk BA, Borzilleri KA, Hesp KD, Zhou K, Ma N, Tu M, Dullea R, Mcclure KF, Wilson RC, Liras S, Mascitti V, Doudna JA. J Am Chem Soc. 2018 Apr 18. doi: 10.1021/jacs.8b01551. [Epub ahead of print]
Genomes in Focus: Development and Applications of CRISPR-Cas9 Imaging Technologies. Knight SC, Tjian R, Doudna JA. Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4329-4337. doi: 10.1002/anie.201709201.
Programmable RNA recognition using CRISPR-associated Argonaute. Lapinaite A, Doudna JA, Cate JHD. Proc Natl Acad Sci USA. 2018 Mar 12. pii: 201717725. doi: 10.1073/pnas.1717725115.
CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. Science. 2018 Feb 15. pii: eaar6245. doi: 10.1126/science.aar6245. RNA-dependent RNA targeting by CRISPR-Cas9. Strutt SC, Torrez RM, Kaya E, Negrete OA, Doudna JA. eLife. 2018 Jan 5;7. pii: e32724. doi: 10.7554/eLife.32724.
2017
CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis E, Khokha MK, Doudna JA, Giraldez AJ. Nat Commun. 2017 Dec 8;8(1):2024. doi: 10.1038/s41467-017-01836-2.
Widespread Translational Remodeling during Human Neuronal Differentiation. Blair JD, Hockemeyer D, Doudna JA, Bateup HS, Floor SN. Cell Rep. 2017 Nov 14;21(7):2005-2016. doi: 10.1016/j.celrep.2017.10.095.
A thermostable Cas9 with increased lifetime in human plasma. Harrington LB, Paez-Espino D, Staahl BT, Chen JS, Ma E, Kyrpides NC, Doudna JA Nat Commun. 2017 Nov 10;8(1):1424. doi: 10.1038/s41467-017-01408-4.
Genomes in Focus: Development and Applications of CRISPR-Cas9 Imaging Technologies. Knight S, Tjian R, Doudna J. Angew Chem Int Ed Engl. 2017 Oct 27. doi: 10.1002/anie.201709201.
Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA. Nature. 2017 Sep 20. doi: 10.1038/nature24268.
Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Knott GJ, East-Seletsky A, Cofsky JC, Holton JM, Charles E, O’Connell MR, Doudna JA. Nat Struct Mol Biol. 2017 Sep 11. doi: 10.1038/nsmb.3466.
A Broad-Spectrum Inhibitor of CRISPR-Cas9. Harrington LB, Doxzen KW, Ma E, Liu JJ, Knott GJ, Edraki A, Garcia B, Amrani N, Chen JS, Cofsky JC, Kranzusch PJ, Sontheimer EJ, Davidson AR, Maxwell KL, Doudna JA. Cell. 2017 Aug 23. pii: S0092-8674(17)30873-5. doi: 10.1016/j.cell.2017.07.037.
A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A. Sci Adv. 2017 Aug 4;3(8):eaao0027. doi: 10.1126/sciadv.aao0027. eCollection 2017 Aug.
Structures of the CRISPR genome integration complex. Wright AV, Liu JJ, Knott GJ, Doxzen KW, Nogales E, Doudna JA. Science. 2017 Jul 20. pii: eaao0679. doi: 10.1126/science.aao0679.
Disabling Cas9 by an anti-CRISPR DNA mimic. Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ, Baik SH, Nogales E, Bondy-Denomy J, Corn JE, Doudna JA. Science Advances 2017 Jul 12;3(7):e1701620. doi: 10.1126/sciadv.1701620. eCollection 2017 Jul.
DNA recognition by an RNA-guided bacterial Argonaute. Doxzen KW, Doudna JA. PLoS One. 2017 May 17;12(5):e0177097. doi: 10.1371/journal.pone.0177097. eCollection 2017.
High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding. Boyle EA, Andreasson JOL, Chircus LM, Sternberg SH, Wu MJ, Guegler CK, Doudna JA, Greenleaf WJ. Proc Natl Acad Sci U S A. 2017 May 11. pii: 201700557. doi: 10.1073/pnas.1700557114.
RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes. East-Seletsky A, O’Connell MR, Burstein D, Knott GJ, Doudna JA. Mol Cell. 2017 May 4;66(3):373-383.e3. doi: 10.1016/j.molcel.2017.04.008.
CRISPR-Cas9 Structures and Mechanisms. Jiang F, Doudna JA. Annu Rev Biophys. 2017 Mar 30. doi: 10.1146/annurev-biophys-062215-010822.
Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery. Gaj T, Staahl BT, Rodrigues GM, Limsirichai P, Ekman FK, Doudna JA, Schaffer DV. Nucleic Acids Res. 2017 Mar 2. doi: 10.1093/nar/gkx154.
Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. Lintner NG, McClure KF, Petersen D, Londregan AT, Piotrowski DW, Wei L, Xiao J, Bolt M, Loria PM, Maguire B, Geoghegan KF, Huang A, Rolph T, Liras S, Doudna JA, Dullea RG, Cate JH. PLoS Biol. 2017 Mar 21;15(3):e2001882. doi: 10.1371/journal.pbio.2001882. eCollection 2017.
RNA-based recognition and targeting: sowing the seeds of specificity. Gorski SA, Vogel J, Doudna JA. Nat Rev Mol Cell Biol. 2017 Feb 15. doi: 10.1038/nrm.2016.174.
Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Staahl BT, Benekareddy M, Coulon-Bainier C, Banfal AA, Floor SN, Sabo JK, Urnes C, Munares GA, Ghosh A Doudna JA. Nat Biotechnol. 2017 Feb 13. doi: 10.1038/nbt.3806.
RNA and DNA Targeting by a Reconstituted Thermus thermophiles Type III-A CRISPR-Cas System. Liu TY, Iavarone AT, Doudna JA. PLoS One. 2017 Jan 23;12(1):e0170552. doi: 10.1371/journal.pone.0170552. eCollection 2017.
Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response. Heler R, Wright AV, Vucelja M, Bikard D, Doudna JA, Marraffini LA. Mol Cell. 2017 Jan 5;65(1):168-175. doi: 10.1016/j.molcel.2016.11.031. Epub 2016 Dec 22.
2016
Cornerstones of CRISPR-Cas in drug discovery and therapy. Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE. Nat Rev Drug Discov. 2016 Dec 23. doi: 10.1038/nrd.2016.238.
New CRISPR-Cas systems from uncultivated microbes. Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF. Nature. 2016 Dec 22. doi: 10.1038/nature21059.
RNA scanning of a molecular machine with a built-in ruler. Koh HR, Kidwell MA, Doudna JA, Myong S. J Am Chem Soc. 2016 Dec 13. [Epub ahead of print]
ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Chen X, Shen Y, Draper W, Buenrostro JD, Litzenburger U, Cho SW, Satpathy AT, Carter AC, Ghosh RP, East-Seletsky A, Doudna JA, Greenleaf WJ, Liphardt JT, Chang HY. Nat Methods. 2016 Oct 17. doi: 10.1038/nmeth.4031.
A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells. Hultquist JF, Schumann K, Woo JM, Manganaro L, McGregor MJ, Doudna J, Simon V, Krogan NJ, Marson A. Cell Rep. 2016 Oct 25;17(5):1438-1452. doi: 10.1016/j.celrep.2016.09.080.
Insights into HIV-1 proviral transcription from the structure and dynamics of the Tat:AFF4:P-TEFb:TAR complex. Schulze-Gahmen U, Echeverria I, Stjepanovic G, Bai Y, Lu H, Schneidman-Duhovny D, Doudna JA, Zhou Q, Sali A, Hurley JH. Elife.2016 Oct 12;5. pii: e15910. doi: 10.7554/eLife.15910.
Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. East-Seletsky A, O’Connell MR, Knight SC, Burstein D, Cate JH, Tjian R, Doudna JA. Nature. 2016 Sep 26. doi: 10.1038/nature19802.
Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Singh D, Sternberg SH, Fei J, Doudna JA, Ha T. Nat Commun. 2016 Sep 14;7:12778. doi: 10.1038/ncomms12778.
Applications of CRISPR technologies in research and beyond. Barrangou R, Doudna JA. Nat Biotechnol. 2016 Sep 8:933-941. doi: 10.1038/nbt.3659.
Protecting genome integrity during CRISPR immune adaptation. Wright AV, Doudna JA. Nat Struct Mol Biol.2016 Sep 5. doi: 10.1038/nsmb.3289.
DNA Targeting by a Minimal CRISPR RNA-Guided Cascade. Hochstrasser ML, Taylor DW, Kornfeld JE, Nogales E, Doudna JA. Mol Cell. 2016 Sep 1;63(5):840-51. doi: 10.1016/j.molcel.2016.07.027.
eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Lee AS, Kranzusch PJ, Doudna JA, Cate JH. Nature. 2016 Jul 27. doi: 10.1038/nature18954.
Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies. Carlson LA, Bai Y, Keane SC, Doudna JA, Hurley JH. Elife 2016 Jun 25;pii: e14663. doi: 10.7554/eLife.14663.
CRISPR Immunological Memory Requires a Host Factor for Specificity. Nuñez JK, Bai L, Harrington LB, Hinder TL, Doudna JA. Mol Cell 2016 Jun 16;62(6):824-33.
Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Oakes BL, Nadler DC, Flamholz A, Fellmann C, Staahl BT, Doudna JA Savage DF. Nat Biotechnol. 2016 Jun;34(6):646-51.
Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Isaac RS, Jiang F, Doudna JA, Lim WA, Narlikar GJ, Almeida RA Elife 2016 Apr 28;5. pii: e13450.
Programmable RNA Tracking in Live Cells with CRISPR/Cas9. Nelles DA, Fang MY, O’Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW Cell 2016 Apr 7;165(2):488-96.
Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oh S, Flynn RA, Floor SN, Purzner J, Martin L, Do BT, Schubert S, Vaka D, Morrissy S, Li Y, Kool M, Hovestadt V, Jones DT, Northcott PA, Risch T, Warnatz HJ, Yaspo ML, Adams CM, Leib RD, Breese M, Marra MA, Malkin D, Lichter P, Doudna JA, Pfister SM, Taylor MD, Chang HY, Cho YJ. Oncotarget 2016 Apr 5
A bacterial Argonaute with noncanonical guide RNA specificity. Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA. Proc Natl Acad Sci U S A 2016 Mar 30
Programmable RNA Tracking in Live Cells with CRISPR/Cas9. Nelles DA, Fang MY, O’Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW. Cell 2016 Mar 16
Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering. Nuñez JK, Harrington LB, Doudna JA. ACS Chem Biol 2016 Feb 9
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA Science 2016 Jan 14. pii: aad8282.
Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering. Wright AV, Nuñez JK, Doudna JA Cell 2016 Jan 14;164(1-2):29-44.
Tunable protein synthesis by transcript isoforms in human cells. Floor SN, Doudna JA eLife 2016 Jan 6;5. pii: e10921
2015
Genome-editing revolution: My whirlwind year with CRISPR. Doudna JA Nature 2015 Dec 24;528(7583):469-71
Genome editing: the end of the beginning. Doudna JA, Gersbach CA Genome Biol 2015 Dec 23;16(1):292
Analog sensitive chemical inhibition of the DEAD-box protein DDX3. Floor SN, Barkovich KJ, Condon KJ, Shokat KM, Doudna JA Protein Sci 2015 Dec 9;
Get in LINE: Competition for Newly Minted Retrotransposon Proteins at the Ribosome. Floor SN, Doudna JA Mol Cell 2015 Dec 3;60(5):712-4
Perspective: Embryo editing needs scrutiny. Doudna J Nature 2015 Dec 3;528(7580):S6
Autoinhibitory Interdomain Interactions and Subfamily-Specific Extensions Redefine the Catalytic Core of the Human DEAD-box Protein DDX3. Floor SN, Condon KJ, Sharma D, Jankowsky E, Doudna JA J Biol Chem 2015 Nov 23;
Dynamics of CRISPR-Cas9 genome interrogation in living cells. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson JB, Dahan M, Liu Z, Doudna JA, Tjian R Science 2015 Nov 13;350(6262):823-6
Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Ma E, Harrington LB, O’Connell MR, Zhou K, Doudna JA Mol Cell 2015 Nov 5;60(3):398-407 PMCID: PMC4636735
Conformational control of DNA target cleavage by CRISPR-Cas9. Sternberg SH, LaFrance B, Kaplan M, Doudna JA Nature 2015 Nov 5;527(7576):110-3
Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System. Redding S, Sternberg SH, Marshall M, Gibb B, Bhat P, Guegler CK, Wiedenheft B, Doudna JA, Greene EC Cell 2015 Nov 5;163(4):854-65 PMCID: PMC4636941
Foreign DNA capture during CRISPR-Cas adaptive immunity. Nuñez JK, Harrington LB, Kranzusch PJ, Engelman AN, Doudna JA Nature 2015 Nov 26;527(7579):535-8 PMCID: PMC4662619
Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2′,3′ cGAMP Signaling. Kranzusch PJ, Wilson SC, Lee AS, Berger JM, Doudna JA, Vance RE Mol Cell 2015 Sep 17;59(6):891-903 PMCID: PMC4575873
Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Bluestone JA, Doudna JA, Marson A Proc Natl Acad Sci U S A 2015 Aug 18;112(33):10437-42 PMCID: PMC4547290
STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA Science 2015 Jun 26;348(6242):1477-81
Expanding the Biologist’s Toolkit with CRISPR-Cas9. Sternberg SH, Doudna JA Mol Cell 2015 May 21;58(4):568-74
CRISPR germline engineering–the community speaks. Bosley KS, Botchan M, Bredenoord AL, Carroll D, Charo RA, Charpentier E, Cohen R, Corn J, Doudna J, Feng G, Greely HT, Isasi R, Ji W, Kim JS, Knoppers B, Lanphier E, Li J, Lovell-Badge R, Martin GS, Moreno J, Naldini L, Pera M, Perry AC, Venter JC, Zhang F, Zhou Q Nat Biotechnol 2015 May;33(5):478-86
Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Taylor DW, Zhu Y, Staals RH, Kornfeld JE, Shinkai A, van der Oost J, Nogales E, Doudna JA Science 2015 May 1;348(6234):581-5 PMCID: PMC4582657
Biotechnology. A prudent path forward for genomic engineering and germline gene modification. (Free Full Text) (Free PDF) Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M, Greely HT, Jinek M, Martin GS, Penhoet E, Puck J, Sternberg SH, Weissman JS, Yamamoto KR Science 2015 Apr 3;348(6230):36-8 PMCID: PMC4394183
The structural biology of CRISPR-Cas systems. Jiang F, Doudna JA Curr Opin Struct Biol 2015 Feb;30:100-11 PMCID: PMC4417044
Rational design of a split-Cas9 enzyme complex. Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, Doudna JA Proc Natl Acad Sci U S A 2015 Mar 10;112(10):2984-9 PMCID: PMC4364227
Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nuñez JK, Lee AS, Engelman A, Doudna JA Nature 2015 Mar 12;519(7542):193-8 PMCID: PMC4359072
Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA Mol Cell 2015 Feb 5;57(3):397-407 PMCID: PMC4320653
Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Lin S, Staahl BT, Alla RK, Doudna JA Elife 2014 Dec 15;3:e04766 PMCID: PMC4383097
Cutting it close: CRISPR-associated endoribonuclease structure and function. Hochstrasser ML, Doudna JA Trends Biochem Sci 2015 Jan;40(1):58-66
2014
RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Staals RH, Zhu Y, Taylor DW, Kornfeld JE, Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Varossieau K, Sakamoto K, Suzuki T, Dohmae N, Yokoyama S, Schaap PJ, Urlaub H, Heck AJ, Nogales E, Doudna JA, Shinkai A, van der Oost J Mol Cell 2014 Nov 20;56(4):518-30 PMCID: PMC4342149
Genome editing. The new frontier of genome engineering with CRISPR-Cas9. (Free Full Text) Doudna JA, Charpentier E Science 2014 Nov 28;346(6213):1258096
New tools provide a second look at HDV ribozyme structure, dynamics and cleavage. Kapral GJ, Jain S, Noeske J, Doudna JA, Richardson DC, Richardson JS Nucleic Acids Res 2014 Nov 10;42(20):12833-46 PMCID: PMC4227795
Programmable RNA recognition and cleavage by CRISPR/Cas9. O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA Nature 2014 Dec 11;516(7530):263-6 PMCID: PMC4268322
RNA-guided assembly of Rev-RRE nuclear export complexes. Bai Y, Tambe A, Zhou K, Doudna JA Elife 2014 Aug 27;3:e03656 PMCID: PMC4142337
Evolutionarily conserved roles of the dicer helicase domain in regulating RNA interference processing. Kidwell MA, Chan JM, Doudna JA J Biol Chem 2014 Oct 10;289(41):28352-62 PMCID: PMC4192488
Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Kranzusch PJ, Lee AS, Wilson SC, Solovykh MS, Vance RE, Berger JM, Doudna JA Cell 2014 Aug 28;158(5):1011-21 PMCID: PMC4157622
Insights into RNA structure and function from genome-wide studies. Mortimer SA, Kidwell MA, Doudna JA Nat Rev Genet 2014 Jul;15(7):469-79
Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA Nat Struct Mol Biol 2014 Jun;21(6):528-34 PMCID: PMC4075942
CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH, Nogales E, Doudna JA Proc Natl Acad Sci U S A 2014 May 6;111(18):6618-23 PMCID: PMC4020112
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA. Science 2014 Mar 14;343(6176):1247997. doi: 10.1126/science.1247997. Epub 2014 Feb 6.
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA Nature 2014 Mar 6;507(7490):62-7 PMCID: PMC4106473
Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Niewoehner O, Jinek M, Doudna JA Nucleic Acids Res 2014 Jan;42(2):1341-53 PMCID: PMC3902920
2013
Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions. Lo TW, Pickle CS, Lin S, Ralston EJ, Gurling M, Schartner CM, Bian Q, Doudna JA, Meyer BJ Genetics 2013 Oct;195(2):331-48 PMCID: PMC3781963
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR Nat Biotechnol 2013 Sep;31(9):839-43 PMCID: PMC3782611
Molecular mechanisms of RNA interference. Wilson RC, Doudna JA. Annu Rev Biophys. 2013;42:217-39. doi: 10.1146/annurev-biophys-083012-130404.
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS Cell 2013 Jul 18;154(2):442-51
Hepatitis C virus 3’UTR regulates viral translation through direct interactions with the host translation machinery. Bai Y, Zhou K, Doudna JA Nucleic Acids Res 2013 Sep;41(16):7861-74 PMCID: PMC3763534
Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation. Sun C, Querol-Audí J, Mortimer SA, Arias-Palomo E, Doudna JA, Nogales E, Cate JH Nucleic Acids Res 2013 Aug;41(15):7512-21 PMCID: PMC3753635
Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Kranzusch PJ, Lee AS, Berger JM, Doudna JA Cell Rep 2013 May 30;3(5):1362-8 PMCID: PMC3800681
Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Lee HY, Zhou K, Smith AM, Noland CL, Doudna JA Nucleic Acids Res 2013 Jul;41(13):6568-76 PMCID: PMC3711433
Substrate-specific structural rearrangements of human Dicer. Taylor DW, Ma E, Shigematsu H, Cianfrocco MA, Noland CL, Nagayama K, Nogales E, Doudna JA, Wang HW Nat Struct Mol Biol 2013 Jun;20(6):662-70 PMCID: PMC3676429
Multiple sensors ensure guide strand selection in human RNAi pathways. Noland CL, Doudna JA RNA 2013 May;19(5):639-48 PMCID: PMC3677279
RNA-protein analysis using a conditional CRISPR nuclease. Lee HY, Haurwitz RE, Apffel A, Zhou K, Smart B, Wenger CD, Laderman S, Bruhn L, Doudna JA Proc Natl Acad Sci U S A 2013 Apr 2;110(14):5416-21 PMCID: PMC3619310
Unconventional miR-122 binding stabilizes the HCV genome by forming a trimolecular RNA structure. Mortimer SA, Doudna JA Nucleic Acids Res 2013 Apr;41(7):4230-40 PMCID: PMC3627571
Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell. 2013 Feb 28;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.
RNA-programmed genome editing in human cells. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J Elife 2013 Jan 29;2:e00471 PMCID: PMC3557905
2012
TRBP alters human precursor microRNA processing in vitro. Lee HY, Doudna JA RNA 2012 Nov;18(11):2012-9 PMCID: PMC3479391
RNA processing enables predictable programming of gene expression. Qi L, Haurwitz RE, Shao W, Doudna JA, Arkin AP Nat Biotechnol 2012 Oct;30(10):1002-6
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E Science 2012 Aug 17;337(6096):816-21
Coordinated activities of human dicer domains in regulatory RNA processing. Ma E, Zhou K, Kidwell MA, Doudna JA J Mol Biol 2012 Sep 28;422(4):466-76 PMCID: PMC3461841
Biochemistry. Guided tour to the heart of RISC. Kaya E, Doudna JA Science 2012 May 25;336(6084):985-6
Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA. Haurwitz RE, Sternberg SH, Doudna JA EMBO J 2012 Jun 13;31(12):2824-32 PMCID: PMC3380207
Mechanism of foreign DNA selection in a bacterial adaptive immune system. Sashital DG, Wiedenheft B, Doudna JA Mol Cell 2012 Jun 8;46(5):606-15 PMCID: PMC3397241
Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. Sternberg SH, Haurwitz RE, Doudna JA RNA 2012 Apr;18(4):661-72 PMCID: PMC3312554
RNA-guided genetic silencing systems in bacteria and archaea. Wiedenheft B, Sternberg SH, Doudna JA. Nature. 2012 Feb 15;482(7385):331-8. doi: 10.1038/nature10886.
Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. Mehle A, Dugan VG, Taubenberger JK, Doudna JA J Virol 2012 Feb;86(3):1750-7 PMCID: PMC3264373
2011
Structures of the RNA-guided surveillance complex from a bacterial immune system. Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJ, van der Oost J, Doudna JA, Nogales E. Nature. 2011 Sep 21; 477(7365): 486-9. PMID: 21938068
siRNA repositioning for guide strand selection by human Dicer complexes. Noland CL, Ma E, Doudna JA. Mol. Cell. 2011 July 8; 43(1):110-21. PMCID: PMC3143821.
Modeling and automation of sequencing-based characterization of RNA structure. Aviran S, Trapnell C, Lucks JB, Mortimer SA, Luo S, Schroth GP, Doudna JA, Arkin AP, Pachter L. Proc. Natl. Acad. Sci. U.S.A. 2011 July 5; 108(27): 11069-74. PMID: 21642536, PMCID: PMC3131376.
Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Lucks, JB, Mortimer, SA, Trapnell C, Luo S, Aviran S, Schroth GP, Pachter L, Doudna JA, Arkin AP. Proc. Natl. Acad. Sci. U.S.A. 2011 Jul 5; 108(27):11063-8. PMID: 21642531, PMCID: PMC3131332.
An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Sashital, DG, Jinek M, Doudna JA. Nat. Struct. Mol. Biol. 2011 Jun; 18(6):680-7. PMID: 21572442.
RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K, Barendregt A, Westphal W, Heck AJ, Boekema EJ, Dickman MJ, Doudna JA. Proc. Natl. Acad. Sci. U.S.A. 2011 Jun 21; 108(25):10092-7. Erratum in: Proc. Natl. Acad. Sci. U. S. A. 2011 Sep 6;108(36):15010. PMID: 21536913, PMCID: PMC3121849
Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ. Nat. Struct. Mol. Biol. 2011 May; 18(5):529-36. PMID: 21460843.
The crystal structure of the signal recognition particle in complex with its receptor. Ataide SF, Schmitz N, Shen K, Ke A, Shan SO, Doudna JA, Ban N. Science. 2011 Feb 18; 331(6019):881-6. PMID: 21330537.
Coupled 5’ nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Jinek M, Coyle SM, Doudna JA. Mol. Cell. 2011 March 4; 41(5):600-8. PMID: 21362555.
Optimized high-throughput screen for hepatitis C virus translation inhibitors. Berry KE, Peng B, Koditek D, Beeman D, Pagratis N, Perry JK, Parrish J, Zhong W, Doudna JA, Shih IH. J. Biomol. Screen. 2011 Feb; 16(2):211-20. PMID: 21297107, PMCID: PMC3260011.
2010
Substrate-Specific Kinetics of Dicer-Catalyzed RNA Processing. Chakravarthy S, Sternberg SH, Kellenberger CA, Doudna JA. J. Mol. Biol. 2010 Dec 3; 404(3):392-402. PMID: 20932845, PMCID: PMC3005596
Structural and biochemical studies of a fluoroacetyl-CoA-specific thioesterase reveal a molecular basis for fluorine selectivity. Weeks AM, Coyle SM, Jinek M, Doudna JA, Chang MC. Biochemistry. 2010 Nov 2; 49(43):9269-79. PMID: 20836570
Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Haurwitz RE, Wiedenheft B, Zhou K, Doudna JA. Science. 2010 329(5997):1355-8. PMID: 20829488, PMCID: PMC3133607.
The HCV IRES pseudoknot positions the initiation codon on the 40S ribosomal subunit. Berry KE, Waghray S, Doudna JA. RNA. 2010 Aug 16 (8):1559-69. PMID: 20584896, PMCID: PMC2905755.
A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity. Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson N, Wolfe N, Giraldez AJ. Science. 2010 Jun 25; 328(5986):1694-8.
Functional Overlap between eIF4G Isoforms in Saccharomyces cerevisiae. Clarkson, Bryan K., Gilbert, Wendy V., Doudna, Jennifer A. PLOS One. 2010; 5(2): e9114. PMID: 20161741, PMCID: PMC2817733.
A host of factors regulating influenza virus replication. Mehle A, Doudna JA. Viruses. 2010 Feb;2(2):566-73. PMID: 21994648, PMCID: PMC3185602.
Structural insights into RNA interference. Sashital, DG, Doudna, JA. Curr. Opin. Struct. Biol. 2010 Feb; 20(1):90-7. PMID: 20053548.
Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation.. Jinek, M., Fabian, M.R., Coyle, S.M., Sonenberg, N, Doudna, JA Nat. Struct. Mol. Biol. 2010 Feb; 17(2):238-40. PMID: 20098421.
2009
Adaptive strategies of the influenza virus polymerase for replication in humans. Mehle A, Doudna JA. Proc. Natl. Acad. Sci. U S A. 2009 Dec 5; 106(50):21312-6. PMID: 19995968, PMCID: PMC2789757.
Structural insights into RNA processing by the human RISC-loading complex. Wang HW, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K, Doudna JA, Nogales E. Nat. Struct. Mol. Biol. 2009 16 (11):1148-U4. PMID: 19820710.
Spatial and temporal expression of dADAR mRNA and protein isoforms during embryogenesis in Drosophila melanogaster. Chen J, Lakshmi GG, Hays DL, McDowell KM, Ma E, Vaughn JC. Differentiation. 2009 78 (5):312-20. PMID: 19720447.
Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Fabian, M.R., Mathonnet, G., Sundermeier, T., Mathys, H., Zipprich, J.T., Svitkin, Y.V., Rivas, F., Jinek, M., Wohlschlegel, J., Doudna, J.A., Chen, C.Y., Shyu, A.B., Yates, J.R. 3rd, Hannon, G.J., Filipowicz, W., Duchaine, T.F., Sonenberg, N. Mol. Cell. Biol. 2009 35 (6):739-40. PMID:19716330.
Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Wiedenheft, B., Zhou, K., Jinek, M., Coyle, S.M., Ma, W., Doudna, J.A. Structure. 2009 17 (6):904-12.
The pathway of hepatitis C virus mRNA recruitment to the human ribosome. Fraser, C.S., Hershey, J.W., Doudna, J.A. Nat. Struct. Mol. Biol. 2009 16 (4):397-404. PMID: 19287397.
dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. Fukunaga, R., Doudna, J.A. EMBO J 2009 28 (5):545-55. PMID:19165150.
A three-dimensional view of the molecular machinery of RNA interference. Jinek, M., Doudna, J.A. Nature 2009 457 (7228):405-12.
Direct link between RACK1 function and localization at the ribosome in vivo. Coyle, S.M., Doudna, J.A. Mol. Cell Biol. 2009 29 (6):1626-34. PMID: 19114558.
2008
An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Mehle, A. and Doudna, J.A. Cell Host Microbe. 2008 4, 111-122.
Special Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Zhou, M., Sandercock, A.M., Fraser, C.S., Ridlova, G., Stephens, E., Schenauer, M.R., Yokoi-Fong, T., Barsky, D., Leary, J.A., Hershey, J.W., Doudna, J.A. and Robinson, C.V. PNAS 2008 Nov 25;105(47):18139-44. doi: 10.1073/pnas.0801313105.
Nucleic acids and their protein partners. Puglisi, J.D. and Doudna, J.A. Curr. Opin. Struct. Biol 2008 18, 279-281.
Autoinhibition of human dicer by its internal helicase domain. Ma, E., MacRae, I.J., Kirsch, J.F., and Doudna, J.A. J. Mol. Biol 2008 380, 237-243.
In vitro reconstitution of the human RISC-loading complex. MacRae, I.J., Ma, E., Zhou, M., Robinson, C.V. and Doudna, J.A. J. Mol. Biol 2008 105, 512-517.
Quantitative studies of ribosome conformational dynamics. Fraser, C.S. and Doudna, J.A. Q. Rev. Biophys 2008 40, 163-189.
Structural determinants of RNA recognition and cleavage by Dicer. MacRae, I.J., Zhou, K. and Doudna, J.A. Nat. Struct. Mol. Biol. 2008 14, 934-940.
2007
Structural roles of monovalent cations in the HDV ribozyme. Ke, A., Ding, F., Batchelor, J.D. and Doudna, J.A. Structure. 2007 15, 281-287.
Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry. Damoc, E., Fraser, C.S., Zhou, M., Videler, H., Mayeur, G.L., Hershey, J.W., Doudna, J.A., Robinson, C.V. and Leary, J.A. Mol. Cell. Proteomics 2007 6, 1135-1146.
Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Fraser, C.S., Berry, K.E., Hershey, J.W. and Doudna, J.A. Curr. Opin. Struct. Biol 2007 17, 1-8.
Structural and mechanistic insights into hepatitis C viral translation initiation. Fraser, C.S. and Doudna, J.A. Nat. Rev. Microbiol 2007 5, 29-38.
2006
Structure of dicer and mechanistic implications for RNAi. MacRae, I.J., Li, F., Zhou, K., Cande, W.Z. and Doudna, J.A. Cold Spring Harb. Symp. Quant. Biol 2006 71, 73-80.
SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting. Siu, F.Y., Spanggord, R.J. and Doudna, J.A. RNA 2006 13, 240-250.
RNAs regulate biology. Green, R. and Doudna, J.A. ACS Chem. Biol 2006 1, 335-338. A fast and efficient procedure to produce scFvs specific for large macromolecular complexes. Wu, S., Ke, A. and Doudna, J.A. J. Immunol. Methods 2006 318, 95-101.
Distinct contributions of KH domains to substrate binding affinity of Drosophila P-element somatic inhibitor protein. Chmiel, N.H., Rio, D.C. and Doudna, J.A. RNA 2006 12, 283-291.
Structural basis for double-stranded RNA processing by Dicer. MacRae, I.J., Zhou, K., Li, F., Repic, A. Brooks, A.N., Cande, W.Z., Adams, P.D. and Doudna, J.A. Science. 2006 311, 195-198.
GTP-dependent formation of a ribonucleoprotein subcomplex required for ribosome biogenesis. Karbstein, K. and Doudna, J.A. J. Mol. Biol. 2006 356, 432-443.
2005
Chemical biology at the crossroads of molecular structure and mechanism. Doudna, J.A. J. Mol. Biol. 2005 1, 300-303.
Structural roles for human translation factor eIF3 in initiation of protein synthesis. Siridechadilok, B., Fraser, C.S., Hall, R.J., Doudna, J.A. and Nogales, E. Science. 2005 310, 1513-1515.
An essential GTPase promotes assembly of preribosomal RNA processing complexes. Karbstein, K., Jonas, S. and Doudna, J.A. Mol. Cell 2005 20, 633-643.
RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle. Spanggord, R.J., Siu, F., Ke, A. and Doudna, J.A. Nat. Struct. Mol. Biol 2005 12, 1116-1122.
Identification and analysis of U5 snRNA variants in Drosophila. Chen, L., Lullo, D.J., Ma, E., Celniker, S.E., Rio, D.C. and Doudna, J.A. RNA 2005 11, 1473-1474.
Ro’s Role in RNA Reconnaissance. MacRae, I. J. and Doudna, J.A. Cell 2005 121, 495-496.
Mass spectrometric analysis of the human 40S ribosomal subunit: Native and HCV IRES-bound complexes. Yu, Y., Ji, H., Doudna, J.A. and Leary, J.A. Protein Sci. 2005 14, 1438-1446.
Ribozyme catalysis: not different, just worse. Doudna, J.A. and Lorsch, J.R. Nat. Struct. Mol. Biol. 2005 12, 395-402.
Editorial Overview: Protein-nucleic acid interactions: unlocking mysteries old and new. Aggarwal, A.K. and Doudna, J.A. Curr. Opin. Struct. Biol. 2005 15, 65-67.
2004
Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Ji, H., Fraser, C.S., Yu, Y., Leary, J. and Doudna, J.A. PNAS 2004 101, 16990-16995.
Crystallization of RNA and RNA-protein complexes. Ke, A. and Doudna, J.A. Methods 2004 34, 408-414
Assembly of an active group II intron-maturase complex by protein dimerization. Rambo, R.P. and Doudna, J.A. Biochemistry 2004 43, 6486-6497.
Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron. Luptak, A. and Doudna, J.A. Nucleic Acid Res 2004 32, 2272-2280
Conserved but nonessential interaction of SRP RNA with translation factor EF-G. Sagar, M.B., Lucast, L. and Doudna, J.A. RNA 2004 10, 772-778.
A conformational switch controls hepatitis delta virus ribozyme catalysis. Ke, A., Zhou, K., Ding, F., Cate, J.H.D. and Doudna, J.A. Nature 2004 429, 201-205.
RNA: Primed for Packing? Karbstein, K. and Doudna, J.A. Chemistry and Biology 2004 11, 149-151.
Structural insights into the signal recognition particle. Doudna, J.A. and Batey, R.T. Ann. Rev. Biochem 2004 73, 539-557.
2003
Editorial Overview: Protein-nucleic acid interactions. Aggarwal, A.K. and Doudna, J.A. Curr. Opin. Struct. Biol 2003 13, 3-5.
The j-subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and its subcomplexes to 40 S ribosomal subunits in vitro. Fraser, C.S., Lee, J.Y., Mayeur, G.L., Bushell, M., Doudna, J.A. and Hershey, J.W. J. Biol. Chem 2003 279, 8946-8956..
The chemical repertoire of natural ribozymes. Doudna, J.A. and Cech, T.R. Nature 2003 418, 222-228.
Structure and function of the eukaryotic ribosome: The next frontier. Doudna, J.A. and Rath, V.L. Cell 2003 109, 153-156.
Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation. Kieft, J.S., Zhou, K., Grech, A., Jubin. R. and Doudna, J.A. Nat. Struct. Biol. 2003 9, 370-374.
Structural and energetic analysis of metal ions essential to SRP signal recognition domain assembly. Batey, R.T. and Doudna, J.A. Biochemistry 2003 41, 11703-11710.
2002
Specificity of RNA-RNA helix recognition. Battle, D.J. and Doudna, J.A. Biochemistry 2002 99, 11676-11681.
Structural insights into group II intron catalysis and branch-site selection. Zhang, L. and Doudna, J.A. Biochemistry 2002 295, 2084-2088.
2001
Creative catalysis: pieces of the RNA world jigsaw. Murray, J. and Doudna, J.A. Trends Biochem. Sci 2001 26, 699-701.
Mechanisms of internal ribosome entry in translation initiation. Kieft, J.S., Grech, A., Adams, P. and Doudna, J.A. Cold Spring Harb. Symp. Quant. Biol 2001 66, 277-283.
Editorial Overview: Protein-nucleic acid interactions. Doudna, J.A. and Richmond, T.J. Curr. Opin. Struct. Biol 2001 11, 11-13.
Direct pKameasurement of the active-site cytosine in a genomic hepatitis delta virus ribozyme. Luptak, A., Ferré-D’Amaré, A.R., Zhou, K., Zilm, K.W. and Doudna, J.A. J. Am. Chem. Soc. 2001 123, 8447-8452.
Direct pKameasurement of the active-site cytosine in a genomic hepatitis delta virus ribozyme. Doherty, E.A. and Doudna, J.A. Ann. Rev. Biophys. Biomol. Struct. 2001 30, 457-475.
A universal mode of helix packing in RNA. Doherty, E.A., Batey, R.T., Masquida, B. and Doudna, J.A. Nat. Struct. Biol 2001 8, 339-343.
Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Spahn, C.M.T., Kieft, J.S., Grassucci, R.A., Penczek, P., Zhou, K., Doudna, J.A. and Frank, J. Nat. Struct. Biol 2001 291, 1959-1962.
Structural and energetic analysis of RNA recognition by a universally conserved protein from the signal recognition particle. Batey, R.T., Sagar, M.B. and Doudna, J.A. Nat. Struct. Biol 2001 307, 229-246.
Large-scale purification of a stable form of recombinant tobacco etch virus protease. Lucast, L.J., Batey, R.T. and Doudna, J.A. Biotechniques 2001 30, 544-554.
Mechanism of ribosome recruitment by hepatitis C IRES RNA. Kieft, J.S., Zhou, K., Jubin, R. and Doudna, J.A. RNA 2001 7, 194-206.
The stem-loop binding protein forms a highly stable and specific complex with the 3′ stem-loop of histone mRNAs. Battle, D.J. and Doudna, J.A. RNA 2001 7, 123-132. Erratum: RNA 7, 642-643.
2000
The stem-loop binding protein forms a highly stable and specific complex with the 3′ stem-loop of histone mRNAs. Ferré-D’Amaré, A.R. and Doudna, J.A. Current Protocols in Nucleic Acid Chemistry 2000 pgs. 7.6.1-7.6.13. John Wiley & Sons, New York.
Metal ions in ribozyme folding and catalysis. Hanna, R. and Doudna, J.A. Curr. Opin. Chem. Biol 2001 4, 166-170.
Structural genomics of RNA. Doudna, J.A. Nature Struct. Biol 2000 7, Suppl., 954-956. Ribozyme Structures and Mechanisms. Doherty, E.A. and Doudna, J.A. Ann. Rev. Biochem 2000 69, 597-615.
Solving large RNA structures by x-ray crystallography. Cate, J.H. and Doudna, J.A. Meth. Enzymol 2000 317, 169-180. Paul Sigler (1934–2000) Jeruzalmi D., Kuriyan J., Doudna J. Trends Biochem. Sci 2000 25, 221-222
. Hepatitis C virus internal ribosome entry site (IRES) stem loop IIId contains a phylogenetically conserved GGG triplet essential for translation and IRES folding. Jubin, R., Vantuno, N.E., Kieft, J.S., Murray, M.G., Doudna, J.A., Lau, J.Y. and Baroudy, B.M. J. Virol 2000 22, 10430-10437.
A phosphoramidate substrate analog is a competitive inhibitor of the Tetrahymena group I ribozyme. Hanna, R.L., Gryaznov, S.M. and Doudna, J.A. Chemistry and Biology. 2000 7, 845-854.
The P5abc peripheral element facilitates preorganization of the Tetrahymena group I ribozyme for catalysis. Engelhardt, M.A., Doherty, E.A., Knitt, D.S., Doudna, J.A., Herschlag, D. Biochemistry. 2000 39, 2639-2651.
Crystal structure of the ribonucleoprotein core of the signal recognition particle. Batey, R.T., Rambo, R.P., Lucast, L., Rha, B. and Doudna, J.A. Biochemistry. 2000 287, 1232-1239.
Crystallization and structure determination of a hepatitis delta virus ribozyme: Use of the RNA-binding protein U1A as a crystallization module. Ferré-D’Amaré, A.R. and Doudna, J.A. Biochemistry. 2000 295, 541-556.
1999
Cashing in on Crystals. Doudna, J.A. Curr. Biol. 1999 19, R731-R734.
Tertiary motifs in RNA structure and folding. Batey, R.T, Rambo, R. and Doudna, J.A. Angewandte Chemie. 1999 38, 2327-2343.
RNA folds: Insights from recent crystal structures. Ferré-D’Amaré, A.R. and Doudna, J.A. . Ann. Rev. Biophys. Biomolec. Struct. 1999 28, 57-73.
The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. Kieft, J.S., Zhou, K., Jubin, R., Murray, M.G., Johnson, Y.N.L. and Doudna, J.A. J. Mol. Biol. 1999 292, 513-529.
A nested double pseudoknot is required for self-cleavage activity of both the genomic and antigenomic hepatitis delta virus ribozymes. Wadkins, T.S., Perrotta, A.T., Ferré-D’Amaré, A.R., Doudna, J.A. and Been, M.D. RNA 1999 5, 720-727.
Assembly of an exceptionally stable RNA tertiary interface in a group I ribozyme. Doherty, E.A., Herschlag, D. and Doudna, J.A. RNA 1999 38, 2982-2990.
RNA structures determined by X-ray crystallography. Doudna, J.A. and Cate, J.H. In Comprehensive Natural Products Chemistry 1999 Vol. 6, pp. 49-61.
Ribozymes: the hammerhead swings into action. Doudna, J.A. Curr. Biol. 1999 8 (14), R495-R497.
The parallel universe of RNA folding. Batey, R.T. and Doudna, J.A. Nat. Struct. Biol. 1999 5, 337-340.
1998
Crystal structure of a hepatitis delta virus ribozyme. Ferré-D’Amaré, A.R., Zhou, K. and Doudna J.A. Nature 1998 395, 567-574.
A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. Basu, S., Rambo, R., Strauss-Soukup, J., Cate, J.H., Ferré-D’Amaré, A.R., Strobel, S.A. and Doudna, J.A. Nature Struc. Biol. 1998 5 (11), 986-992.
A general module for RNA crystallization. Ferré-D’Amaré, A.R., Zhou, K. and Doudna, J.A. J. Mol. Biol. 1998 279, 621-631. RNA structure. A molecular contortionist. Doudna, J.A. Nature 1998 338, 830-831.
1997
RNA seeing double: close-packing of helices in RNA tertiary structure. Strobel, S.A. and Doudna, J.A. Trends in Biochem. Sci. 1997 22, 262-266.
A Sparse Matrix Approach to Crystallizing Ribozymes and RNA Motifs. Cate, J.H. and Doudna, J.A. Ribozyme Protocols, Methods in Molecular Biology 1997 74, 379-386.
Establishing Suitability of RNA Preparations for Crystallization. Determination of Polydispersity. Ferré-D’Amaré, A.R. and Doudna, J.A. Ribozyme Protocols, Methods in Molecular Biology 1997 74, 371-378.
Preparation of Homogeneous Ribozyme RNA for Crystallization. Doudna, J.A. Ribozyme Protocols, Methods in Molecular Biology 1997 74, 365-370.
A magnesium ion core at the heart of a ribozyme domain. Cate, J.H., Hanna, R.H. and Doudna, J.A. Nat. Struct. Biol. 1997 4, 553-558. Comment: Nat. Struct. Biol. 4, 509-512. Erratum: Nat. Struct. Biol. 4, 840.
The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core. Doherty, E.A. and Doudna, J.A. Biochemistry. 1997 36, 3159-3169.
Emerging themes in RNA folding. Doudna, J.A. and Doherty, E.A. Folding and Design 1997 2, R65-70.
RNA structure: crystal clear? Doudna, J.A. and Cate, J.H. Curr. Opin. Struct. Biol. 1997 7, 310-316.
1996
Book Review – Catalytic RNA, edited by Fritz Eckstein and David M.J. Lilley Doudna, J.A. Nucleic Acids and Molecular Biology 1996 3, 1083-1084.
Metal-binding sites in the major groove of a large ribozyme domain. Cate, J.H. and Doudna, J.A. Structure. 1996 4, 1221-1229.
RNA tertiary structure mediation by adenosine platforms. Cate, J.H., Gooding, A., Podell, E., Zhou, K., Golden, B., Szewczak, A., Kundrot, C., Cech, T.R. and Doudna, J.A. Science. 1996 273, 1696-1699.
Crystal structure of a group I ribozyme domain: Principles of RNA packing. Cate, J.H., Gooding, A., Podell, E., Zhou, K., Golden, B., Szewczak, A., Kundrot, C., Cech, T.R. and Doudna, J.A. Science. 1996 273, 1678-1685.
Preliminary x-ray diffraction studies of an RNA pseudoknot that inhibits HIV-1 reverse transcriptase. Jones, J.T., Barnes, C.L., Lietzke, S.E., Weichenrieder, O., Doudna, J.A. and Kundrot, C.E. Acta Cryst. D. 1996 52(Part 5), 1018-1020.
Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Ferré-D’Amaré, A.R. and Doudna, J.A. Nucleic Acids Res. 1996 24, 977-78.
1995
Hammerhead ribozyme structure: U-turn for RNA structural biology. Doudna, J.A. Structure. 1995 3, 747-750.
Self-assembly of a group I intron active site from its component tertiary structural domains. Doudna, J.A. and Cech, T.R. RNA. 1995 1, 36-45.
Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. Doudna, J.A. and Cech, T.R. and Sullenger, B.A. PNAS. 1995 92, 2355-2359.
1994
Hammering out the shape of a ribozyme. Doudna, J.A. Structure. 1994 2, 1271-1272.
1993
Mechanism and Structure of a Catalytic RNA Molecule. Cech, T.R., Bevilacqua, P.C., Doudna, J.A., McConnell, T.S., Strobel, S.A. and Weinstein, L.A. Proceedings of The Robert A. Welch Foundation 37th Conference on Chemical Research: 40 Years of the DNA Double Helix, Houston, Texas 1993 91-110.
Crystallization of ribozymes and small RNA folding motifs by a sparse matrix method. Doudna, J.A., Grosshans, C., Gooding, A. and Kundrot, C.E. PNAS. 1993 90, 7829-7833.
RNA-catalyzed primer extension by tri-nucleotides: a model for the RNA-catalyzed replication of RNA. Doudna, J.A., Usman, N. and Szostak, J.W. Biochemistry 1993 32, 2111-2115.
1991
Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Musier-Forsyth, K., Usman, N., Scaringe, S., Doudna, J., Green, R. and Schimmel, P. Science 1991 253, 784-786.
A multisubunit ribozyme that is a catalyst of and template for complementary strand RNA synthesis. Doudna, J.A., Couture, S. and Szostak, J.W. Science 1991 251, 1605-1608.
Template-directed primer extension catalyzed by the Tetrahymena ribozyme. Bartel, D.P., Doudna, J.A., Usman, N. and Szostak, J.W. Mol. Cell. Biol 1991 11, 3390-3394.
1990
Chemical synthesis of oligo-ribonucleotides containing 2-aminopurine: Substrates for the investigation of ribozyme function. Doudna, J.A., Szostak, J.W., Rich, A. and Usman, N. J. Org. Chem 1990 55, 5547-5549.
Mutational analysis of conserved nucleotides in a self-splicing group I intron. Couture, S., Ellington, A.D., Gerber, A.S., Cherry, J.M., Doudna, J.A., Green, R., Hanna, M., Pace, U., Rajagopal, J. and Szostak, J.W. J. Mol. Biol. 1990 215, 345-358.
1989
Mini ribozymes, small derivatives of the sunYintron, are catalytically active. Doudna, J.A. and Szostak, J.W. Mol. Cell. Biol 1989 9, 5480-5483.
RNA catalyzed synthesis of complementary strand RNA. Doudna, J.A. and Szostak, J.W. Nature. 1989 339, 519-522.
Stereochemical course of catalysis by the Tetrahymena ribozyme. Rajagopal, J., Doudna, J.A. and Szostak, J.W. Science. 1989 244, 692-94.
RNA structure, not sequence, determines the 5′ splice-site specificity of a group I intron. Doudna, J.A., Cormack, B.P. and Szostak, J.W. PNAS 1989 86, 7402-7406.
1987
Genetic dissection of an RNA enzyme. Doudna, J.A., Cherry, J.M., Gerber, A.S. and Szostak, J.W. Cold Spring Harb. Symp. Quant. Biol 1987 52, 173-180